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Abstract
Interest in molecular magnets continues to grow, offering a link between the atomic and
nanoscale properties. The classical Heisenberg model has been effective in modelling exchange
interactions in such systems. In this, the magnetization and susceptibility are calculated through
the partition function, where the Hamiltonian contains both Zeeman and exchange energy. For
an ensemble of N spins, this requires integrals in 2N dimensions. For two, three and four spin
nearest-neighbour chains these integrals reduce to sums of known functions. For the case of the
three and four spin chains, the sums are equivalent to results of Joyce. Expanding these sums,
the effect of the exchange on the linear susceptibility appears as Langevin functions with
exchange term arguments. These expressions are generalized here to describe an N spin
nearest-neighbour chain, where the exchange between each pair of nearest neighbours is
different and arbitrary. For a common exchange constant, this reduces to the result of Fisher.
The high-temperature expansion of the Langevin functions for the different exchange constants
leads to agreement with the appropriate high-temperature quantum formula of Schmidt et al,
when the spin number is large. Simulations are presented for open linear chains of three, four
and five spins with up to four different exchange constants, illustrating how the exchange
constants can be retrieved successfully.

1. Introduction

Molecular magnets are typified by relatively small numbers
of paramagnetic spins which interact intramolecularly via
exchange forces, and where the intermolecular dipole–dipole
interaction can be ignored. They are of interest as model
magnetic systems, where basic understanding of exchange can
be studied, as well as offering promise as novel materials [1–3],
with the possibility of applications in areas including material
science, biomedicine and quantum computing—see [4] and
references therein. For a recent survey and discussion of
theoretical and experimental aspects of magnetic molecules the
reader is referred to an article by Luban [5]. From a theoretical
point of view, where the spin number is large, the classical

Heisenberg model has proved useful. Notably, Fisher [6],
Joyce [7] and Blume et al [8] advanced this model. More
recently, with the progress in molecular magnet synthesis,
theoretical interest has been revived [9–12]. Of interest to
many of these authors are descriptions of the susceptibility of
such magnetic systems where two or more different exchange
constants are involved [9, 11, 12]. Significantly, Luban et al
[13] have applied the high-temperature quantum expansion for
the low-field susceptibility of Schmidt et al [11] to obtain
from experiment values for a system with four different
exchange parameters, without recourse to diagonalizing large
quantum Hamiltonians. With this interest in mind, here we
present a classical, low-field susceptibility formula for an
open chain of N spins, with arbitrary and different exchange
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between each pair of nearest neighbours. Using a result
due to Gegenbauer [14], the authors [15] have been able
to re-derive, in a simple manner, the results of Joyce for
open classical Heisenberg spin chains where the partition
functions are expressed as sums of known functions, and also
to obtain some new results. Expanding these sums, it is
possible to obtain analytic expressions for the magnetization
to terms linear in the applied field, corresponding to the
linear susceptibility. (In addition, if required, the non-linear
susceptibility can be obtained by taking non-linear terms in
the magnetization [15, 16].) The effect of the exchange on
the linear susceptibility is expressed in terms of Langevin
functions with exchange term arguments. Furthermore by
considering the source of each of these terms, it is possible,
from the finite cases, to infer a structure for a chain of any
number of spins (the N-chain) which is in agreement with a
result obtainable from Joyce [7] for a four spin chain. The
formula shows the expected asymptotic behaviour for small
and large exchange, and for equal exchange the result of
Fisher [6, 9] is recovered. It is consistent within the approach
of Takahashi [17] for dimerized classical chains and with that
of Furasaki et al [18] for equal exchange but random sign.
It is also in agreement with the appropriate high-temperature
expansion resulting from Schmidt et al [11] for the limit of
large spin number. Following Schmidt et al, simulations
are performed to illustrate the usefulness of this formula.
Within these simulations, open linear chains containing up
to five spins, with four different exchange constants, have
been considered. The temperature dependence of the low-
field susceptibility has been calculated using this formula and
noise has been added. The same formula has then been
fitted over the temperature range 50–300 K, in order to show
that up to four different exchange constants can be retrieved.
Further calculations and simulations might be performed with
reference to diagonalizing the Hamiltonian as performed by
Luban et al [13], with a view to outlining the differences
between quantum and classical Heisenberg models as dealt
with recently by Engelhardt et al [19].

2. Classical Heisenberg model for two spin and
three spin chains

The Hamiltonian for two interacting spins contains the
isotropic classical Heisenberg exchange and Zeeman (external
field) terms

H2−spin = −Jc �e1 · �e2 − μ0m �H · (�e1 + �e2) (1)

where �H is the external magnetic field vector, �ei represents the
unit vector of each classical spin, μ0 is the permeability of free
space, and the classical values for the exchange parameter Jc

and classical magnetic moment m are taken as [20]

Jc = Js(s + 1), m = gμB

√
s(s + 1). (2)

Here J is the exchange constant where we take J > 0 for
ferromagnetic and J < 0 for anti-ferromagnetic exchange,
g is the Landé spectroscopic splitting factor, μB is the Bohr
magneton, and s is the spin number. From [15] the classical

partition function for two spins can be written as a sum of
known functions

Z2−spin =
∞∑

n=0

(2n + 1)in(ξ)2in(K ) (3)

where K = Jc/kT , ξ = μ0m H/kT , k is Boltzmann’s
constant, T is absolute temperature, and the functions in(x)

are [7, 9, 21]

in(x) =
√

π

2x
In+ 1

2
(x) (4)

where In+ 1
2
(x) are the modified spherical Bessel functions of

the first kind [22]. It is worth noting that i0(x) = sinh(x)/x
and i1(x) = cosh(x)/x − sinh(x)/x so that i1(x)/ i0(x) =
coth(x) − 1/x = L(x), the Langevin function. In this sum,
each in(ξ) is due to the field acting on each spin and in(K ) is
due to the single exchange interaction. The magnetization can
be obtained from

M = Nm

V

1

N

∂ Z

∂ξ
(5)

where V is the sample volume and N is the number of spin
sites. Expanding the magnetization to the first order in ξ leads
to the low-field susceptibility per spin site

χ2−spin = χ0(1 + L(K )) (6)

where the zero exchange linear susceptibility per spin site is
given by

χ0 = μ0m2

3kT V
. (7)

This agrees with previous results [9] and for zero exchange the
Curie law is recovered. The Hamiltonian for a three spin chain
with two different exchange constants is

H3−spin = −Jc1,2 �e1 · �e2 − Jc2,3 �e2 · �e3

− μ0m �H · (�e1 + �e2 + �e3) (8)

where Jc1,2 and Jc2,3 are the exchange constants between spins
1 and 2, and spins 2 and 3, respectively. From [15] the classical
partition function for the three spin chain can be written as

Z3−spin =
∞∑

l=0

∞∑

m=0

∞∑

n=0

(2n + 1)(2m + 1)(2l + 1)

×
(

n m l
0 0 0

)2

in(ξ)im(ξ)il(ξ)in(K1,2)im(K2,3) (9)

where K1,2 = Jc1,2/kT and K2,3 = Jc2,3/kT . Here, each
of the three terms in(ξ), im(ξ) and il(ξ) is due to the field
acting on each spin and the two terms in(K1,2) and im(K1,2) are
due to the two exchange interactions. The coefficient includes
the Wigner 3 j symbol which occurs in angular momentum
problems, and can be readily calculated for small values [23].
This is of the same form as that of Joyce [7] for a cluster treated
via a Bethe–Peierls–Weiss approximation. Again, expanding
to the first order in ξ leads to the low-field susceptibility per
spin site

χ3−spin = χ0
(
1 + 2

3 [L(K1,2) + L(K2,3) + L(K1,2)L(K2,3)]
)

(10)
and again for zero exchange the Curie law is recovered.
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3. Extension to an N-spin chain

The terms in equations (6) and (10) can be interpreted as
follows: the single term(s) L(Ki,i+1) are due to nearest-
neighbour exchange interactions. The product term in the
case of three spins is due to next-nearest-neighbour spin
correlations, in this case from spin 1 to spin 3 via spin 2. This
can be extended to four spins where

χ4−spin = χ0

⎛

⎜⎜⎜⎜⎜
⎝

1 + 2

4

⎡

⎢⎢⎢⎢⎢
⎣

L(K1,2)

+L(K2,3)

+L(K3,4)

+L(K1,2)L(K2,3)

+L(K2,3)L(K3,4)

+L(K1,2)L(K2,3)L(K3,4)

⎤

⎥⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟
⎠

.

(11)
This result is also obtainable from the expansion for four
spins [7, 15]. From an examination of the structure it is
possible to deduce an N-spin structure for the susceptibility.
Thus, for an N-spin chain with nearest-neighbour exchange
we can write

χN−spin = χ0

(

1 + 2

N

N−1∑

k=1

N−k∑

j=1

k−1∏

i=0

L(K j+i, j+1+i )

)

; (12)

where the exchange between each pair is taken as equal this
simplifies to

χN−spin = χ0

(

1 + 2

N

N−1∑

k=1

(N − k)L(K )k

)

. (13)

Using the arithmetic–geometric progression (equation (0.112)
of [24]) for the above series, we can write for N spins

χN−spin = χ0

(
1 + L(K )

1 − L(K )
− 2L(K )

N

1 − L(K )N

(1 − L(K ))2

)
(14)

which is the zero-field susceptibility formula of Fisher [6, 9]
for an open chain of N spins with equal classical Heisenberg
exchange acting between them. It is worth noting that this
expression for the susceptibility is consistent with that resulting
from the zero-field fluctuation relation [12]

χN−spin = χ0

(

1 + 2

N

N∑

i> j

〈�ei · �e j〉
)

(15)

where Fisher’s two-spin correlation function result for open
ended chains, with equal exchange along the chain [6, 9, 20],

〈�ei · �ei+n〉 = L(K )n (16)

is a special case.

4. Comparison with finite spin quantum spin models

Schmidt et al [11] presented exact analytical expressions for
the high-temperature expansion for finite quantum Heisenberg
spin systems with different exchange between nearest-
neighbour spins. These were employed by Luban et al [13] for
the cubane-type magnetic molecule {Cr8} with four different

Figure 1. Data generated using exchange parameter values Jci,i+1 /k,
for a five-spin chain (i = 1 . . . 4) {−135,−200,−300,−380 K}
with white noise added. Parameter estimates resulting from the
constrained non-linear fit are {−133,−205,−316,−366 K}, which
are accurate to within 5.4% of the true parameter values. (The
vertical axis is effectively normalized χT .)

exchange constants. Applying the generic formula of Schmidt
et al to a three-spin chain as considered here leads to

χ3−spin = χ0

(
1 + 2

3

[
K1,2

3
+ K2,3

3
+ K1,2 K2,3

9

− 3

4s(s + 1)

[(
K1,2

3

)2

+
(

K2,3

3

)2]])
. (17)

This is in agreement with a low-exchange (high-temperature)
expansion of equation (10), where the low-value approxima-
tion L(x) ∼= x/3 is taken, but includes a quantum correction
term, which vanishes for very large spin number. An empirical
hybrid of these would be

χ3−spin = χ0

(
1 + 2

3

[
L(K1,2) + L(K2,3) + L(K1,2)L(K2,3)

− 3

4s(s + 1)

[
L(K1,2)

2 + L(K2,3)
2

]])
(18)

which would agree with both the Schmidt high-temperature
quantum result and the all-temperature classical result (for
infinite spin number). Calculations similar to those of
Schmidt et al, where the high-temperature data generated by
diagonalizing the Hamiltonian were fitted to a polynomial and
related to the formulae of Schmidt et al, might be repeated for
the full temperature range, using the various formulae above.
Furthermore, the N-spin classical susceptibility formulae
should be of use in studies, such that of Engelhardt et al
[19], which aim to distinguish between quantum and classical
effects.

5. Simulations for classical spin chains

Following Schmidt et al, we exclude factors such as
diamagnetic contributions and look exclusively at how
accurately exchange parameters may be estimated from
simulated susceptibility data. For N-spin chains up to length
N = 5 theoretical susceptibility data were generated and white
noise added. The signal-to-noise ratio is approximately 3 ×
103. Then, using Maple’s sequential quadratic programming
(SQP) routine to perform a constrained non-linear fitting of
equation (12) to the generated data, it was possible to retrieve
estimates for the exchange parameters. In the case of the three-
spin chain and the four-spin chain, estimates for the respective

3
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Figure 2. Repeated simulation of fitting to susceptibility data generated for the four-spin chain using exchange parameter values
{−150,−125,−90 K}. The linear co-dependence is illustrated by the rod-like structure.

two and three exchange parameters are readily obtained. For
the five-spin chain, in order to achieve reliable convergence
and so obtain reasonable estimates for the four exchange
parameters, constraints specifying the sign of the exchange
parameters were incorporated into the fitting procedure. As
discussed by Schmidt et al, this requires additional magneto-
chemical information in order to generate estimates for
the exchange parameters. The fits were performed in the
temperature range 50–300 K and the case of the five-spin
chain is presented in figure 1 with the chosen and retrieved
exchange values. The low-temperature range has been avoided,
where in experiments quantum effects lead to disagreement
with the classical model. For the four-spin chain the linear
co-dependence of the parameters is illustrated in figure 2, by
the rod-like pattern in the 3D plot for repeated simulations,
consistent with the line-like pattern observable in figure 4 of
Schmidt et al for the case of two linear co-dependent exchange
parameters.

6. Conclusions

Here we present a classical, low-field susceptibility formula
for an open chain of N spins, with arbitrary and different
exchange between each pair of nearest neighbours. Within
this formula, the exchange parameters appear as arguments
in Langevin functions. The formula shows the expected
asymptotic behaviour for small and large exchange, and for
equal exchange the result of Fisher [6, 9] is recovered. It
is also in agreement with the appropriate high-temperature
expansion resulting from Schmidt et al [11] for the limit of
large spin number. Simulations demonstrate that it is possible
to retrieve up to four different exchange constants using this
formula.
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